Parallel Machine Scheduling Through Column Generation: Minimax Objective Functions
نویسندگان
چکیده
In this paper we describe a solution framework for a number of scheduling problems in which the goal is to find a feasible schedule that minimizes some objective function of the minimax type on a set of parallel, identical machines, subject to release dates, deadlines, and/or generalized precedence constraints. We determine a lower bound on the objective function in the following way. We first turn the minimization problem into a decision problem by putting an upper bound on the outcome value; the question is then ‘Does there exist a feasible schedule for the given instance?’. The question of feasibility is identical to ‘Are m machines enough to feasibly accommodate all jobs?’. We turn this decision problem into a minimization problem again by asking for the minimum number of machines that we need. This can be formulated as an integer linear programming problem that resembles the ILP-formulation of the cutting stock problem. For this problem we determine a high quality lower bound by applying column generation to the LP-relaxation; if this lower bound is more than m, then we can conclude infeasibility. To speed up the process, we compute an intermediate lower bound based on the outcome of the pricing problem. As the pricing problem is intractable for many variants of the original scheduling problem, we mostly solve it approximately by applying local search, but once in every 50 iterations, we solve it to optimality by formulating it as an integer linear programming problem using a time-indexed formulation that we solve using CPLEX such that we can compute our intermediate lower bound. After having derived the lower bound on the objective function of the original scheduling problem, we try to find a matching upper bound by identifying
منابع مشابه
Using column generation to solve parallel machine scheduling problems with minmax objective functions
In this paper we consider the parallel machine scheduling problem of minimizing an objective function of the minmax type, like maximum lateness, subject to release dates, deadlines, and/or generalized precedence constraints. We use a destructive strategy to compute a lower bound. Here we test the feasibility of a decision problem by applying column generation to compute a bound on the number of...
متن کاملParallel Machine Scheduling by Column Generation
Parallel machine scheduling problems concern the scheduling of n jobs on m machines to minimize some function of the job completion times. If preemption is not allowed, then most problems are not only NP-hard, but also very hard from a practical point of view. In this paper, we show that strong and fast linear programming lower bounds can be computed for an important class of machine scheduling...
متن کاملDesign of a Hybrid Genetic Algorithm for Parallel Machines Scheduling to Minimize Job Tardiness and Machine Deteriorating Costs with Deteriorating Jobs in a Batched Delivery System
This paper studies the parallel machine scheduling problem subject to machine and job deterioration in a batched delivery system. By the machine deterioration effect, we mean that each machine deteriorates over time, at a different rate. Moreover, job processing times are increasing functions of their starting times and follow a simple linear deterioration. The objective functions are minimizin...
متن کاملA fuzzy mixed-integer goal programming model for a parallel machine scheduling problem with sequence-dependent setup times and release dates
This paper presents a new mixed-integer goal programming (MIGP) model for a parallel machine scheduling problem with sequence-dependent setup times and release dates. Two objectives are considered in the model to minimize the total weighted flow time and the total weighted tardiness simultaneously. Due to the com-plexity of the above model and uncertainty involved in real-world scheduling probl...
متن کاملFuzzy Programming for Parallel Machines Scheduling: Minimizing Weighted Tardiness/Earliness and Flow Time through Genetic Algorithm
Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager encounters; this is why in recent decades extensive studies have been done on scheduling issues. One type of scheduling problems is just-in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical model for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006